> "I trained the model with models written from scratch as well as pre trained models"

- toc: true
- branch: master
- badges: true
- comments: true
- categories: [fastpages, jupyter]
- image: images/MNIST/mnist.png
- hide: false
- search_exclude: true
- metadata_key1: metadata_value1
- metadata_key2: metadata_value2
  File "<ipython-input-1-8bd4f2b82836>", line 2
    > "I trained the model with models written from scratch as well as pre trained models"
    ^
SyntaxError: invalid syntax

We are importing all the required packages and data

# It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python
# For example, here's several helpful packages to load

import numpy as np # linear algebra
import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)

# Input data files are available in the read-only "../input/" directory
# For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory

import os
for dirname, _, filenames in os.walk('/kaggle/input'):
    for filename in filenames:
        print(os.path.join(dirname, filename))

# You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" 
# You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session
/kaggle/input/digit-recognizer/sample_submission.csv
/kaggle/input/digit-recognizer/train.csv
/kaggle/input/digit-recognizer/test.csv

We will use fast AI for our production. Fast AI is a framework on top of pytorch which makes our development of deep learning models easy

from fastai import *
from fastai.vision import *
import os

# to easier work with paths
from pathlib import Path

# to read and manipulate .csv-files
import pandas as pd
INPUT = Path("../input/digit-recognizer")

We could see our data

train_df = pd.read_csv(INPUT/"train.csv")
train_df.head(3)
label pixel0 pixel1 pixel2 pixel3 pixel4 pixel5 pixel6 pixel7 pixel8 pixel9 pixel10 pixel11 pixel12 pixel13 pixel14 pixel15 pixel16 pixel17 pixel18 pixel19 pixel20 pixel21 pixel22 pixel23 pixel24 pixel25 pixel26 pixel27 pixel28 pixel29 pixel30 pixel31 pixel32 pixel33 pixel34 pixel35 pixel36 pixel37 pixel38 pixel39 pixel40 pixel41 pixel42 pixel43 pixel44 pixel45 pixel46 pixel47 pixel48 pixel49 pixel50 pixel51 pixel52 pixel53 pixel54 pixel55 pixel56 pixel57 pixel58 pixel59 pixel60 pixel61 pixel62 pixel63 pixel64 pixel65 pixel66 pixel67 pixel68 pixel69 pixel70 pixel71 pixel72 pixel73 pixel74 pixel75 pixel76 pixel77 pixel78 pixel79 pixel80 pixel81 pixel82 pixel83 pixel84 pixel85 pixel86 pixel87 pixel88 pixel89 pixel90 pixel91 pixel92 pixel93 pixel94 pixel95 pixel96 pixel97 pixel98 pixel99 pixel100 pixel101 pixel102 pixel103 pixel104 pixel105 pixel106 pixel107 pixel108 pixel109 pixel110 pixel111 pixel112 pixel113 pixel114 pixel115 pixel116 pixel117 pixel118 pixel119 pixel120 pixel121 pixel122 pixel123 pixel124 pixel125 pixel126 pixel127 pixel128 pixel129 pixel130 pixel131 pixel132 pixel133 pixel134 pixel135 pixel136 pixel137 pixel138 pixel139 pixel140 pixel141 pixel142 pixel143 pixel144 pixel145 pixel146 pixel147 pixel148 pixel149 pixel150 pixel151 pixel152 pixel153 pixel154 pixel155 pixel156 pixel157 pixel158 pixel159 pixel160 pixel161 pixel162 pixel163 pixel164 pixel165 pixel166 pixel167 pixel168 pixel169 pixel170 pixel171 pixel172 pixel173 pixel174 pixel175 pixel176 pixel177 pixel178 pixel179 pixel180 pixel181 pixel182 pixel183 pixel184 pixel185 pixel186 pixel187 pixel188 pixel189 pixel190 pixel191 pixel192 pixel193 pixel194 pixel195 pixel196 pixel197 pixel198 pixel199 pixel200 pixel201 pixel202 pixel203 pixel204 pixel205 pixel206 pixel207 pixel208 pixel209 pixel210 pixel211 pixel212 pixel213 pixel214 pixel215 pixel216 pixel217 pixel218 pixel219 pixel220 pixel221 pixel222 pixel223 pixel224 pixel225 pixel226 pixel227 pixel228 pixel229 pixel230 pixel231 pixel232 pixel233 pixel234 pixel235 pixel236 pixel237 pixel238 pixel239 pixel240 pixel241 pixel242 pixel243 pixel244 pixel245 pixel246 pixel247 pixel248 pixel249 pixel250 pixel251 pixel252 pixel253 pixel254 pixel255 pixel256 pixel257 pixel258 pixel259 pixel260 pixel261 pixel262 pixel263 pixel264 pixel265 pixel266 pixel267 pixel268 pixel269 pixel270 pixel271 pixel272 pixel273 pixel274 pixel275 pixel276 pixel277 pixel278 pixel279 pixel280 pixel281 pixel282 pixel283 pixel284 pixel285 pixel286 pixel287 pixel288 pixel289 pixel290 pixel291 pixel292 pixel293 pixel294 pixel295 pixel296 pixel297 pixel298 pixel299 pixel300 pixel301 pixel302 pixel303 pixel304 pixel305 pixel306 pixel307 pixel308 pixel309 pixel310 pixel311 pixel312 pixel313 pixel314 pixel315 pixel316 pixel317 pixel318 pixel319 pixel320 pixel321 pixel322 pixel323 pixel324 pixel325 pixel326 pixel327 pixel328 pixel329 pixel330 pixel331 pixel332 pixel333 pixel334 pixel335 pixel336 pixel337 pixel338 pixel339 pixel340 pixel341 pixel342 pixel343 pixel344 pixel345 pixel346 pixel347 pixel348 pixel349 pixel350 pixel351 pixel352 pixel353 pixel354 pixel355 pixel356 pixel357 pixel358 pixel359 pixel360 pixel361 pixel362 pixel363 pixel364 pixel365 pixel366 pixel367 pixel368 pixel369 pixel370 pixel371 pixel372 pixel373 pixel374 pixel375 pixel376 pixel377 pixel378 pixel379 pixel380 pixel381 pixel382 pixel383 pixel384 pixel385 pixel386 pixel387 pixel388 pixel389 pixel390 pixel391 pixel392 pixel393 pixel394 pixel395 pixel396 pixel397 pixel398 pixel399 pixel400 pixel401 pixel402 pixel403 pixel404 pixel405 pixel406 pixel407 pixel408 pixel409 pixel410 pixel411 pixel412 pixel413 pixel414 pixel415 pixel416 pixel417 pixel418 pixel419 pixel420 pixel421 pixel422 pixel423 pixel424 pixel425 pixel426 pixel427 pixel428 pixel429 pixel430 pixel431 pixel432 pixel433 pixel434 pixel435 pixel436 pixel437 pixel438 pixel439 pixel440 pixel441 pixel442 pixel443 pixel444 pixel445 pixel446 pixel447 pixel448 pixel449 pixel450 pixel451 pixel452 pixel453 pixel454 pixel455 pixel456 pixel457 pixel458 pixel459 pixel460 pixel461 pixel462 pixel463 pixel464 pixel465 pixel466 pixel467 pixel468 pixel469 pixel470 pixel471 pixel472 pixel473 pixel474 pixel475 pixel476 pixel477 pixel478 pixel479 pixel480 pixel481 pixel482 pixel483 pixel484 pixel485 pixel486 pixel487 pixel488 pixel489 pixel490 pixel491 pixel492 pixel493 pixel494 pixel495 pixel496 pixel497 pixel498 pixel499 pixel500 pixel501 pixel502 pixel503 pixel504 pixel505 pixel506 pixel507 pixel508 pixel509 pixel510 pixel511 pixel512 pixel513 pixel514 pixel515 pixel516 pixel517 pixel518 pixel519 pixel520 pixel521 pixel522 pixel523 pixel524 pixel525 pixel526 pixel527 pixel528 pixel529 pixel530 pixel531 pixel532 pixel533 pixel534 pixel535 pixel536 pixel537 pixel538 pixel539 pixel540 pixel541 pixel542 pixel543 pixel544 pixel545 pixel546 pixel547 pixel548 pixel549 pixel550 pixel551 pixel552 pixel553 pixel554 pixel555 pixel556 pixel557 pixel558 pixel559 pixel560 pixel561 pixel562 pixel563 pixel564 pixel565 pixel566 pixel567 pixel568 pixel569 pixel570 pixel571 pixel572 pixel573 pixel574 pixel575 pixel576 pixel577 pixel578 pixel579 pixel580 pixel581 pixel582 pixel583 pixel584 pixel585 pixel586 pixel587 pixel588 pixel589 pixel590 pixel591 pixel592 pixel593 pixel594 pixel595 pixel596 pixel597 pixel598 pixel599 pixel600 pixel601 pixel602 pixel603 pixel604 pixel605 pixel606 pixel607 pixel608 pixel609 pixel610 pixel611 pixel612 pixel613 pixel614 pixel615 pixel616 pixel617 pixel618 pixel619 pixel620 pixel621 pixel622 pixel623 pixel624 pixel625 pixel626 pixel627 pixel628 pixel629 pixel630 pixel631 pixel632 pixel633 pixel634 pixel635 pixel636 pixel637 pixel638 pixel639 pixel640 pixel641 pixel642 pixel643 pixel644 pixel645 pixel646 pixel647 pixel648 pixel649 pixel650 pixel651 pixel652 pixel653 pixel654 pixel655 pixel656 pixel657 pixel658 pixel659 pixel660 pixel661 pixel662 pixel663 pixel664 pixel665 pixel666 pixel667 pixel668 pixel669 pixel670 pixel671 pixel672 pixel673 pixel674 pixel675 pixel676 pixel677 pixel678 pixel679 pixel680 pixel681 pixel682 pixel683 pixel684 pixel685 pixel686 pixel687 pixel688 pixel689 pixel690 pixel691 pixel692 pixel693 pixel694 pixel695 pixel696 pixel697 pixel698 pixel699 pixel700 pixel701 pixel702 pixel703 pixel704 pixel705 pixel706 pixel707 pixel708 pixel709 pixel710 pixel711 pixel712 pixel713 pixel714 pixel715 pixel716 pixel717 pixel718 pixel719 pixel720 pixel721 pixel722 pixel723 pixel724 pixel725 pixel726 pixel727 pixel728 pixel729 pixel730 pixel731 pixel732 pixel733 pixel734 pixel735 pixel736 pixel737 pixel738 pixel739 pixel740 pixel741 pixel742 pixel743 pixel744 pixel745 pixel746 pixel747 pixel748 pixel749 pixel750 pixel751 pixel752 pixel753 pixel754 pixel755 pixel756 pixel757 pixel758 pixel759 pixel760 pixel761 pixel762 pixel763 pixel764 pixel765 pixel766 pixel767 pixel768 pixel769 pixel770 pixel771 pixel772 pixel773 pixel774 pixel775 pixel776 pixel777 pixel778 pixel779 pixel780 pixel781 pixel782 pixel783
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188 255 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 191 250 253 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 123 248 253 167 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 247 253 208 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 29 207 253 235 77 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 209 253 253 88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 93 254 253 238 170 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 23 210 254 253 159 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 209 253 254 240 81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 27 253 253 254 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 206 254 254 198 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 168 253 253 196 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 203 253 248 76 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 188 253 245 93 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 103 253 253 191 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89 240 253 195 25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 220 253 253 80 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 94 253 253 253 94 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89 251 253 250 131 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 214 218 95 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 18 30 137 137 192 86 72 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 86 250 254 254 254 254 217 246 151 32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 179 254 254 254 254 254 254 254 254 254 231 54 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 72 254 254 254 254 254 254 254 254 254 254 254 254 104 0 0 0 0 0 0 0 0 0 0 0 0 0 61 191 254 254 254 254 254 109 83 199 254 254 254 254 243 85 0 0 0 0 0 0 0 0 0 0 0 0 172 254 254 254 202 147 147 45 0 11 29 200 254 254 254 171 0 0 0 0 0 0 0 0 0 0 0 1 174 254 254 89 67 0 0 0 0 0 0 128 252 254 254 212 76 0 0 0 0 0 0 0 0 0 0 47 254 254 254 29 0 0 0 0 0 0 0 0 83 254 254 254 153 0 0 0 0 0 0 0 0 0 0 80 254 254 240 24 0 0 0 0 0 0 0 0 25 240 254 254 153 0 0 0 0 0 0 0 0 0 0 64 254 254 186 7 0 0 0 0 0 0 0 0 0 166 254 254 224 12 0 0 0 0 0 0 0 0 14 232 254 254 254 29 0 0 0 0 0 0 0 0 0 75 254 254 254 17 0 0 0 0 0 0 0 0 18 254 254 254 254 29 0 0 0 0 0 0 0 0 0 48 254 254 254 17 0 0 0 0 0 0 0 0 2 163 254 254 254 29 0 0 0 0 0 0 0 0 0 48 254 254 254 17 0 0 0 0 0 0 0 0 0 94 254 254 254 200 12 0 0 0 0 0 0 0 16 209 254 254 150 1 0 0 0 0 0 0 0 0 0 15 206 254 254 254 202 66 0 0 0 0 0 21 161 254 254 245 31 0 0 0 0 0 0 0 0 0 0 0 60 212 254 254 254 194 48 48 34 41 48 209 254 254 254 171 0 0 0 0 0 0 0 0 0 0 0 0 0 86 243 254 254 254 254 254 233 243 254 254 254 254 254 86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 114 254 254 254 254 254 254 254 254 254 254 239 86 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13 182 254 254 254 254 254 254 254 254 243 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 76 146 254 255 254 255 146 19 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 141 139 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 254 254 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 254 254 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 254 254 106 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 254 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 254 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 254 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 185 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 89 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 146 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 254 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 254 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 254 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 254 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9 254 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 156 254 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 185 255 255 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 185 254 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 185 254 254 184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63 254 254 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
test_df = pd.read_csv(INPUT/"test.csv")
test_df.head(3)
test_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 28000 entries, 0 to 27999
Columns: 784 entries, pixel0 to pixel783
dtypes: int64(784)
memory usage: 167.5 MB
TRAIN = Path("../train")
TEST = Path("../test")

As fast AI deep learning models doesn't work on Dataframe. We will make a directory consisting of each number (0 to 9).

for index in range(10):
    try:
        os.makedirs(TRAIN/str(index))
    except:
        pass
try:
    os.makedirs(TEST)
except:
    pass

Now we will convert our Dataframe which consist of 785 columns where one column is the label of the digit and all the other columns are the values of pixels (28 * 28) =784 pixels

We will convert our pixels into images

import numpy as np

# import PIL to display images and to create images from arrays
from PIL import Image

def saveDigit(digit, filepath):
    digit = digit.reshape(28,28)
    digit = digit.astype(np.uint8)

    img = Image.fromarray(digit)
    img.save(filepath)
for index, row in train_df.iterrows():
    
    label,digit = row[0], row[1:]
    
    folder = TRAIN/str(label)
    filename = f"{index}.jpg"
    filepath = folder/filename
    
    digit = digit.values
    
    saveDigit(digit, filepath)
for index, digit in test_df.iterrows():

    folder = TEST
    filename = f"{index}.jpg"
    filepath = folder/filename
    
    digit = digit.values
    
    saveDigit(digit, filepath)

Let's see one of our images

subdirectory=str(0)
path = TEST
images = os.listdir(path)
image = Image.open(path/images[2])
image

See how each image is mapped in terms of pixels

import matplotlib.pyplot as plt
image_path = TEST/os.listdir(TEST)[9]
image = Image.open(image_path)
image_array = np.asarray(image)


fig, ax = plt.subplots(figsize=(15, 15))

img = ax.imshow(image_array, cmap='gray')

for x in range(28):
    for y in range(28):
        value = round(image_array[y][x]/255.0, 2)
        color = 'black' if value > 0.5 else 'white'
        ax.annotate(text=value, xy=(x, y), ha='center', va='center', color=color)

plt.axis('off')
plt.show()

Let's make our dataloaders

data = ImageDataLoaders.from_folder(
    path = TRAIN,  
    valid_pct = 0.1,
    bs = 256,
    size = 28,

    
)

We are using here resnet50 modal and freezed model and trained last layer for three epochs then unfreeze layers to train our model

from fastai.callback.fp16 import *
learn = cnn_learner(data, resnet50, metrics=accuracy).to_fp16()
learn.fine_tune(12, freeze_epochs=3)
Downloading: "https://download.pytorch.org/models/resnet50-19c8e357.pth" to /root/.cache/torch/hub/checkpoints/resnet50-19c8e357.pth
epoch train_loss valid_loss accuracy time
0 1.295694 0.723254 0.770952 00:47
1 0.795691 0.495572 0.839286 00:45
2 0.495209 0.346795 0.891667 00:46
epoch train_loss valid_loss accuracy time
0 0.195334 0.132666 0.958333 00:48
1 0.085935 0.087034 0.973571 00:49
2 0.056619 0.070643 0.979048 00:48
3 0.043681 0.057061 0.983571 00:49
4 0.024404 0.061974 0.984524 00:48
5 0.018393 0.057527 0.985952 00:48
6 0.013382 0.040939 0.988810 00:48
7 0.005638 0.046235 0.989286 00:48
8 0.003291 0.038489 0.992143 00:49
9 0.001797 0.040723 0.992619 00:47
10 0.000823 0.035182 0.991905 00:49
11 0.000425 0.033875 0.991905 00:48

We are getting 99% accuracy on our valid set

Let's get our predictions for our validation set

path=TEST
f=os.listdir(TEST)
new=[str(path)+'/'+s for s in f]
test_dl=learn.dls.test_dl(new)
class_score,y=learn.get_preds(dl=test_dl)
class_score
tensor([[7.9710e-09, 1.0000e+00, 5.3882e-09,  ..., 1.5793e-07, 9.2361e-10, 3.0881e-09],
        [1.0000e+00, 2.6406e-11, 1.7783e-10,  ..., 2.6252e-11, 1.7040e-10, 3.4339e-11],
        [1.0057e-08, 3.5678e-10, 1.7419e-08,  ..., 1.3101e-09, 1.0000e+00, 1.4072e-08],
        ...,
        [2.8537e-08, 1.4790e-08, 3.6033e-09,  ..., 1.4994e-08, 3.6144e-08, 4.4814e-07],
        [1.2168e-09, 4.7895e-13, 4.1590e-10,  ..., 1.4900e-11, 1.0000e+00, 3.3751e-09],
        [2.3216e-10, 8.6410e-08, 1.0862e-09,  ..., 7.7182e-09, 5.8203e-09, 1.9867e-07]])

We get predictions for each label and get the maximum probability.

class_score = np.argmax(class_score, axis=1)
class_score[1].item()
0

Let's Submit our data

sample_submission =  pd.read_csv(INPUT/"sample_submission.csv")
display(sample_submission.head(2))
display(sample_submission.tail(2))
ImageId Label
0 1 0
1 2 0
ImageId Label
27998 27999 0
27999 28000 0
ImageId = [os.path.splitext(path)[0] for path in os.listdir(TEST)]
# typecast to int so that file can be sorted by ImageId
ImageId = [int(path) for path in ImageId]
# +1 because index starts at 1 in the submission file
ImageId = [ID+1 for ID in ImageId]
submission  = pd.DataFrame({
    "ImageId": ImageId,
    "Label": class_score
})
# submission.sort_values(by=["ImageId"], inplace = True)
submission.to_csv("submission.csv", index=False)
display(submission.head(3))
display(submission.tail(3))
ImageId Label
0 21368 1
1 26151 0
2 21961 8
ImageId Label
27997 19739 4
27998 8680 8
27999 43 4